Propositional Logic

Question: How do we formalize the definitions and reasoning we use in our proofs?

Where We're Going

- Propositional Logic (Today)
- Reasoning about Boolean values.
- First-Order Logic (Wednesday/Friday)
- Reasoning about properties of multiple objects.

Propositional Logic

A proposition is a statement that is, by itself, either true or false.

Some Sample Propositions

- I am not throwing away my shot.
- I'm just like my country.
- I'm young, scrappy, and hungry.
- I'm not throwing away my shot.
- I'm ‘a get a scholarship to King's College.
- I prob'ly shouldn't brag, but dag, I amaze and astonish.
- The problem is I got a lot of brains but no polish.

Things That Aren't Propositions

Things That Aren't Propositions

Questions cannot be true or false.

Propositional Logic

- Propositional logic is a mathematical system for reasoning about propositions and how they relate to one another.
- Every statement in propositional logic consists of propositional variables combined via propositional connectives.
- Each variable represents some proposition, such as "You liked it" or "You should have put a ring on it."
- Connectives encode how propositions are related, such as "If you liked it, then you should have put a ring on it."

Propositional Variables

- Each proposition will be represented by a propositional variable.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
- Each variable can take on one of two values: true or false.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- First, there's the logical "NOT" operation: $\neg p$
- You'd read this out loud as "not p."
- The fancy name for this operation is logical negation.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- Next, there's the logical "AND" operation:

p \wedge q

- You'd read this out loud as " p and q."
- The fancy name for this operation is logical conjunction.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- Then, there's the logical "OR" operation:

$\boldsymbol{p} \vee \boldsymbol{q}$

- You'd read this out loud as " p or q."
- The fancy name for this operation is logical disjunction. This is an inclusive or.

Truth Tables

- A truth table is a table showing the truth value of a propositional logic formula as a function of its inputs.
- Let's go look at the truth tables for the three connectives we've seen so far:

Summary of Important Points

- The v connective is an inclusive "or." It's true if at least one of the operands is true.
- Similar to the || operator in C, C++, Java, etc. and the or operator in Python.
- If we need an exclusive "or" operator, we can build it out of what we already have.

Try it yourself: Combine the $\neg, \boldsymbol{\wedge}$, and \mathbf{v} operators together to form an expression that represents the exclusive or of p and q (something that's true if and only if exactly one of p and q are true).

Respond at pollev.com/zhenglian740

Mathematical Implication

Implication

- We can represent implications using this connective:

$p \rightarrow q$

- You'd read this out loud as " p implies q."
- The fancy name for this is the material conditional.

Question: What should the truth table for $p \rightarrow q$ look like? Enter your guess as a list of four values to fill in the rightmost column of the table.

Respond at pollev.com/zhenglian740

Ancient Contract:

If Nanni pays money to Ea-Nasir, then Ea-Nasir will give Nanni quality copper ingots.

Ancient Contract:

If Nanni pays money to Ea-Nasir, then Ea-Nasir will give Nanni quality copper ingots.

Ancient Contract:

If Nanni pays money to Ea-Nasir, then Ea-Nasir will give Nanni quality copper ingots.

Gives quality

Ancient Contract:

If Nanni pays money to Ea-Nasir, then Ea-Nasir will give Nanni quality copper ingots.

Gives quality

Ancient Contract:

If Nanni pays money to Ea-Nasir, then Ea-Nasir will give Nanni quality copper ingots.

Important observation:
The statement $p \rightarrow q$ is true whenever $p \wedge \neg q$ is false.

Please commit this table to memory. We're going to need it, extensively, over the next couple of weeks.

Fun Fact: The Contrapositive Revisited

The Biconditional Connective

The Biconditional Connective

- On Friday, we saw that " p if and only if q " means both that $p \rightarrow q$ and $q \rightarrow p$.
- We can write this in propositional logic using the biconditional connective:

$\boldsymbol{p} \leftrightarrow \boldsymbol{q}$

- This connective's truth table has the same meaning as " p implies q and q implies p."

Question: What should the truth table for $p \leftrightarrow q$ look like? Enter your guess as a list of four values to fill in the rightmost column of the table.

Respond at pollev.com/zhenglian740

Biconditionals

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Here's its truth table:

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

Biconditionals

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Here's its truth table:

True and False

- There are two more "connectives" to speak of: true and false.
- The symbol T is a value that is always true.
- The symbol \perp is value that is always false.
- These are often called connectives, though they don't connect anything.
- (Or rather, they connect zero things.)

Proof by Contradiction

- Suppose you want to prove p is true using a proof by contradiction.
- The setup looks like this:
- Assume p is false.
- Derive something that we know is false.
- Conclude that p is true.
- In propositional logic:

$$
(\neg p \rightarrow \perp) \rightarrow p
$$

Operator Precedence

- How do we parse this statement?

$$
\neg x \rightarrow y \vee z \rightarrow x \vee y \wedge z
$$

- Operator precedence for propositional logic:

$$
\begin{aligned}
& \neg \\
& \Lambda \\
& \mathrm{V} \\
& \rightarrow \\
& \leftrightarrow
\end{aligned}
$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
\neg x \rightarrow y \vee z \rightarrow x \vee y \wedge z
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow y \vee z \rightarrow x \vee y \wedge z
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow y \vee z \rightarrow x \vee y \wedge z
$$

- Operator precedence for propositional logic:
^
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow y \vee z \rightarrow x \vee(y \wedge z)
$$

- Operator precedence for propositional logic:
^
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow y \vee z \rightarrow x \vee(y \wedge z)
$$

- Operator precedence for propositional logic:
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow(y \vee z) \rightarrow(x \vee(y \wedge z))
$$

- Operator precedence for propositional logic:
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow(y \vee z) \rightarrow(x \vee(y \wedge z))
$$

- Operator precedence for propositional logic:
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow((y \vee z) \rightarrow(x \vee(y \wedge z)))
$$

- Operator precedence for propositional logic:
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow((y \vee z) \rightarrow(x \vee(y \wedge z)))
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- The main points to remember:
- \neg binds to whatever immediately follows it.
- \wedge and v bind more tightly than \rightarrow.
- We will commonly write expressions like $p \wedge q \rightarrow r$ without adding parentheses.
- For more complex expressions, we'll try to add parentheses.
- Confused? Please ask!

The Big Table

Connective	Read Aloud As	C++ Version	Fancy Name
\neg	"not"	$!$	Negation
\wedge	"and"	$\& \&$	Conjunction
\uparrow	"or"	\|।	Disjunction
\rightarrow	"implies"	see PS2!	Implication
\leftrightarrow	"if and only if"	see PS2!	Biconditional
\top	"true"	true	Truth
\perp	"false"	false	Falsity

Time-Out for Announcements!

Office Hours

- Office hours start today. Think of them as "drop-in help hours" where you can ask questions on problem sets, lecture topics, etc.
- Check the Guide to Office Hours on the course website for the schedule.
- Most office hours are held online. A few are hybrid.
- Once you arrive, sign up on QueueStatus so that we can help people in the order they arrived:
https://queuestatus.com/queues/2774
- Office hours are much less crowded earlier in the week than later.
- Thursday (July $4^{\text {th }}$) is a university holiday. We are still planning to host OHs, but watch for any updates.

Finding a Problem Set Partner

Looking for a problem set partner?

- Meet folks in lecture!
- Meet folks in office hours!
- Check out our pinned thread on EdStem!
- Fill out our matchmaking form!
- First round of matches have been sent out.
- We will perform a second round of matching this Friday!

Back to CS103!

Recap So Far

- A propositional variable is a variable that is either true or false.
- The propositional connectives are
- Negation: $\neg p$
- Conjunction: $p \wedge q$
- Disjunction: $p \vee q$
- Implication: $p \rightarrow q$
- Biconditional: $p \leftrightarrow q$
- True: \top
- False: \perp

Translating into Propositional Logic

Some Sample Propositions

a : I will be in the path of totality.
b : I will see a total solar eclipse.

Some Sample Propositions

a : I will be in the path of totality.
b : I will see a total solar eclipse.
"I won't see a total solar eclipse if I'm not in the path of totality."

Question: How would you express this statement in propositional logic?

Respond at pollev.com/zhenglian 740

Some Sample Propositions

a : I will be in the path of totality.
b : I will see a total solar eclipse.
"I won't see a total solar eclipse if I'm not in the path of totality."

$$
\neg a \rightarrow \neg b
$$

" p if q "

translates to

$$
q \rightarrow p
$$

It does not translate to

$$
p \rightarrow q
$$

Some Sample Propositions

a : I will be in the path of totality. b : I will see a total solar eclipse. c : There is a total solar eclipse today.

Some Sample Propositions

a : I will be in the path of totality.
b : I will see a total solar eclipse.
c : There is a total solar eclipse today.
"If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse."

Question: How would you express this statement in propositional logic?

Respond at pollev.com/zhenglian740

Some Sample Propositions

a : I will be in the path of totality.
b : I will see a total solar eclipse.
c : There is a total solar eclipse today.
"If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse."

$$
a \wedge \neg c \rightarrow \neg b
$$

" p, but $q^{\prime \prime}$

translates to

p ^ q

The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
- In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositional phrases lead to counterintuitive translations; make sure to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince you that the statement $\boldsymbol{p} \wedge \boldsymbol{q}$ is false?

Quick Question:

What would I have to show you to convince you that the statement $\boldsymbol{p} \mathbf{v} \boldsymbol{q}$ is false?

de Morgan's Laws

- Using truth tables, we concluded that

$$
\neg(p \wedge q)
$$

is equivalent to

$$
\neg p \vee \neg q
$$

- We also saw that

$$
\neg(p \vee q)
$$

is equivalent to

$$
\neg p \wedge \neg q
$$

- These two equivalences are called De Morgan's Laws.

de Morgan's Laws in Code

- Pro tip: Don't write this:

$$
\begin{aligned}
& \text { if }(!(p() \& \& q()))\{ \\
& \quad / * \ldots * / \\
& \}
\end{aligned}
$$

- Write this instead:

$$
\begin{aligned}
& \text { if (!p() || !q()) \{ } \\
& \text { /*... */ } \\
& \}
\end{aligned}
$$

- (This even short-circuits correctly!)

An Important Equivalence

- Earlier, we talked about the truth table for $p \rightarrow q$. We chose it so that

$$
p \rightarrow q \quad \text { is equivalent to } \quad \neg(p \wedge \neg q)
$$

- Later on, this equivalence will be incredibly useful:
$\neg(p \rightarrow q)$ is equivalent to $p \wedge \neg q$

Another Important Equivalence

- Here's a useful equivalence. Start with $p \rightarrow \boldsymbol{q}$ is equivalent to $\neg(\boldsymbol{p} \wedge \neg q)$
- By de Morgan's laws:
$\boldsymbol{p} \rightarrow \boldsymbol{q}$ is equivalent to $\neg(\boldsymbol{p} \wedge \neg q)$ is equivalent to $\neg \boldsymbol{p} \mathbf{V} \neg \neg \boldsymbol{q}$ is equivalent to $\neg \boldsymbol{p} \vee \boldsymbol{q}$
- Thus $\boldsymbol{p} \rightarrow \boldsymbol{q}$ is equivalent to $\neg \boldsymbol{p} \vee \boldsymbol{q}$

Another Important Equivalence

If p is false, then $\neg p \vee q$ is true.
If \boldsymbol{p} is true, then \boldsymbol{q} has to be true for the whole expression to be true.

- Thus $\boldsymbol{p} \rightarrow \boldsymbol{q}$ is equivalent to $\neg \boldsymbol{p} \mathbf{v} \boldsymbol{q}$

Next Time

- First-Order Logic
- Reasoning about groups of objects.
- First-Order Translations
- Expressing yourself in symbolic math!

