Propositional Logic

Question: How do we formalize the definitions and reasoning we use in our proofs?

Where We're Going

- **Propositional Logic** (Today)
 - Reasoning about Boolean values.
- *First-Order Logic* (Wednesday/Friday)
 - Reasoning about properties of multiple objects.

Propositional Logic

A *proposition* is a statement that is, by itself, either true or false.

Some Sample Propositions

- I am not throwing away my shot.
- I'm just like my country.
- I'm young, scrappy, and hungry.
- I'm not throwing away my shot.
- I'm 'a get a scholarship to King's College.
- I prob'ly shouldn't brag, but dag, I amaze and astonish.
- The problem is I got a lot of brains but no polish.

Things That Aren't Propositions

Things That Aren't Propositions

Questions cannot be true or false.

Propositional Logic

- **Propositional logic** is a mathematical system for reasoning about propositions and how they relate to one another.
- Every statement in propositional logic consists of *propositional variables* combined via *propositional connectives*.
 - Each variable represents some proposition, such as "You liked it" or "You should have put a ring on it."
 - Connectives encode how propositions are related, such as "If you liked it, then you should have put a ring on it."

Propositional Variables

- Each proposition will be represented by a propositional variable.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
- Each variable can take on one of two values: true or false.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- First, there's the logical "NOT" operation:

¬*p*

- You'd read this out loud as "not p."
- The fancy name for this operation is *logical negation*.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- Next, there's the logical "AND" operation:

рла

- You'd read this out loud as "p and q."
- The fancy name for this operation is *logical conjunction*.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- Then, there's the logical "OR" operation:

p v q

- You'd read this out loud as "p or q."
- The fancy name for this operation is *logical disjunction*. This is an *inclusive* or.

Truth Tables

- A *truth table* is a table showing the truth value of a propositional logic formula as a function of its inputs.
- Let's go look at the truth tables for the three connectives we've seen so far:

¬ ∧ V

Summary of Important Points

- The v connective is an *inclusive* "or." It's true if at least one of the operands is true.
 - Similar to the || operator in C, C++, Java, etc. and the **or** operator in Python.
- If we need an exclusive "or" operator, we can build it out of what we already have.

Try it yourself: Combine the ¬, ∧, and ∨ operators together to form an expression that represents the exclusive or of p and q (something that's true if and only if exactly one of p and q are true).

Respond at pollev.com/zhenglian740

Mathematical Implication

Implication

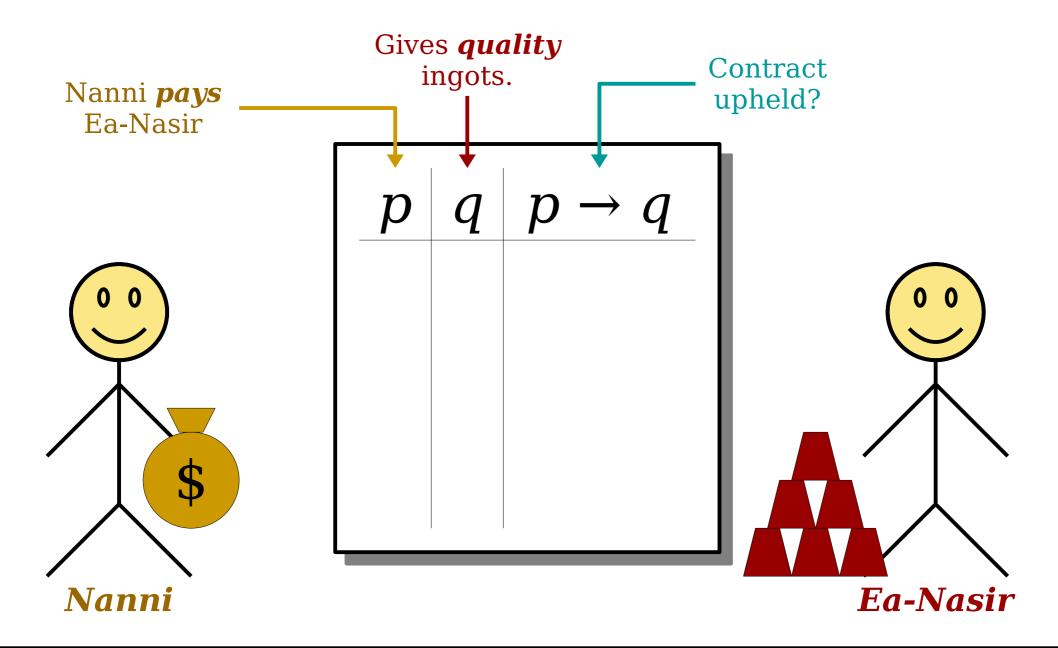
• We can represent implications using this connective:

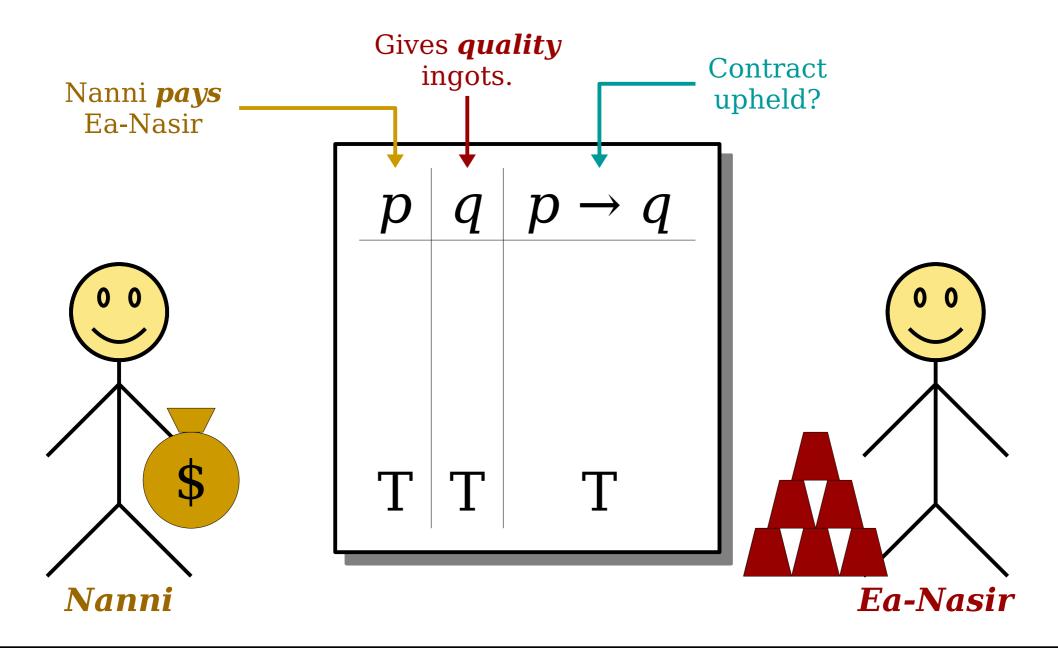
$\boldsymbol{p} \rightarrow \boldsymbol{q}$

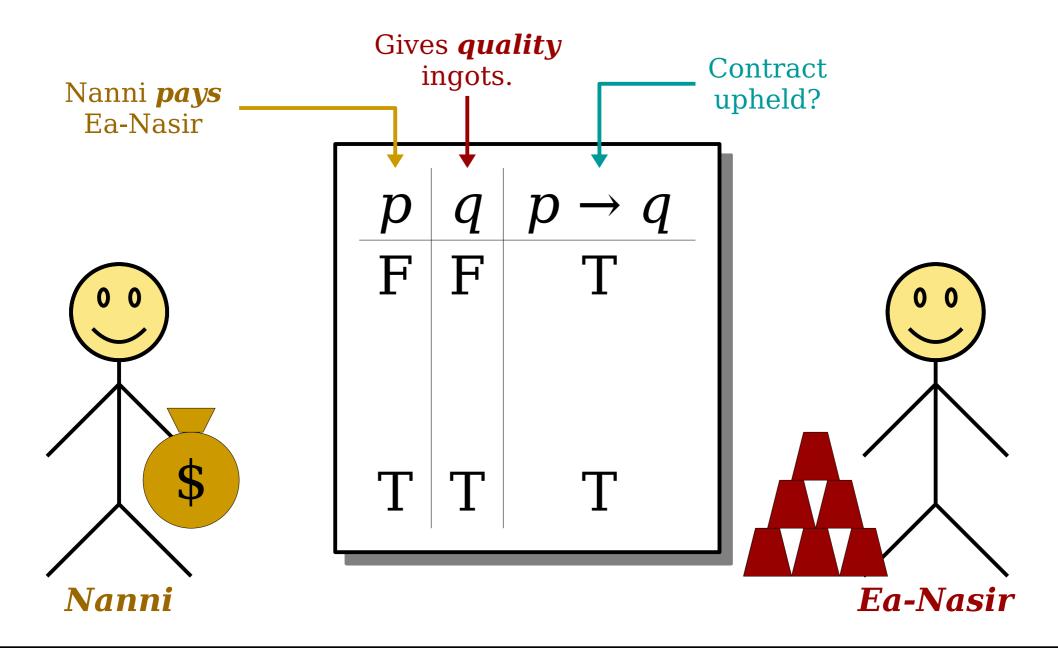
- You'd read this out loud as "p implies q."
 - The fancy name for this is the *material conditional*.

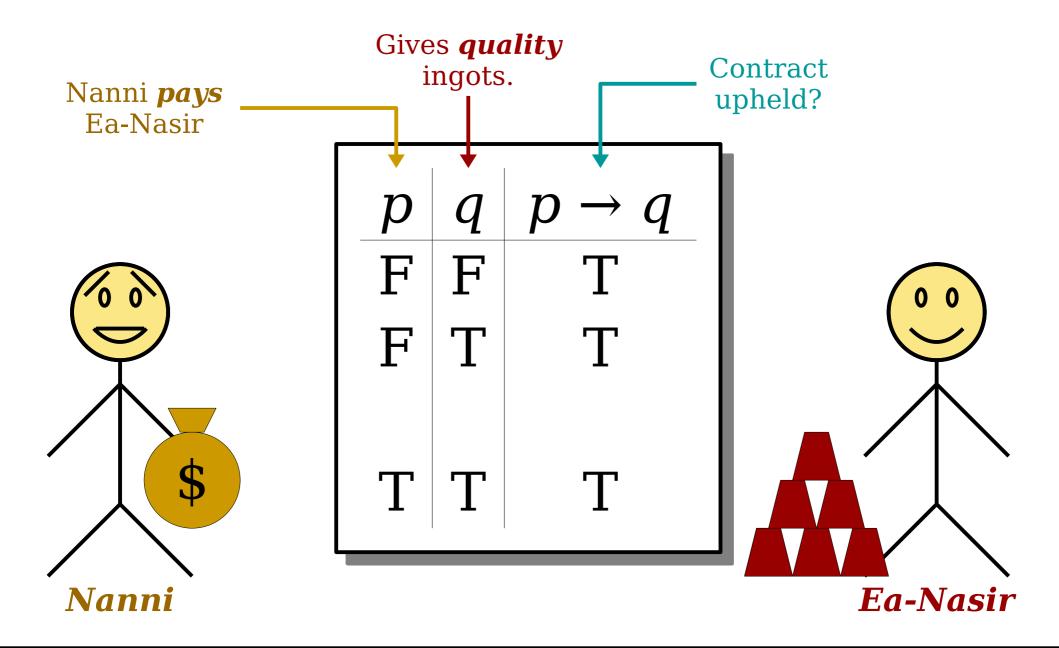
Question: What should the truth table for $p \rightarrow q$ look like? Enter your guess as a list of four values to fill in the rightmost column of the table.

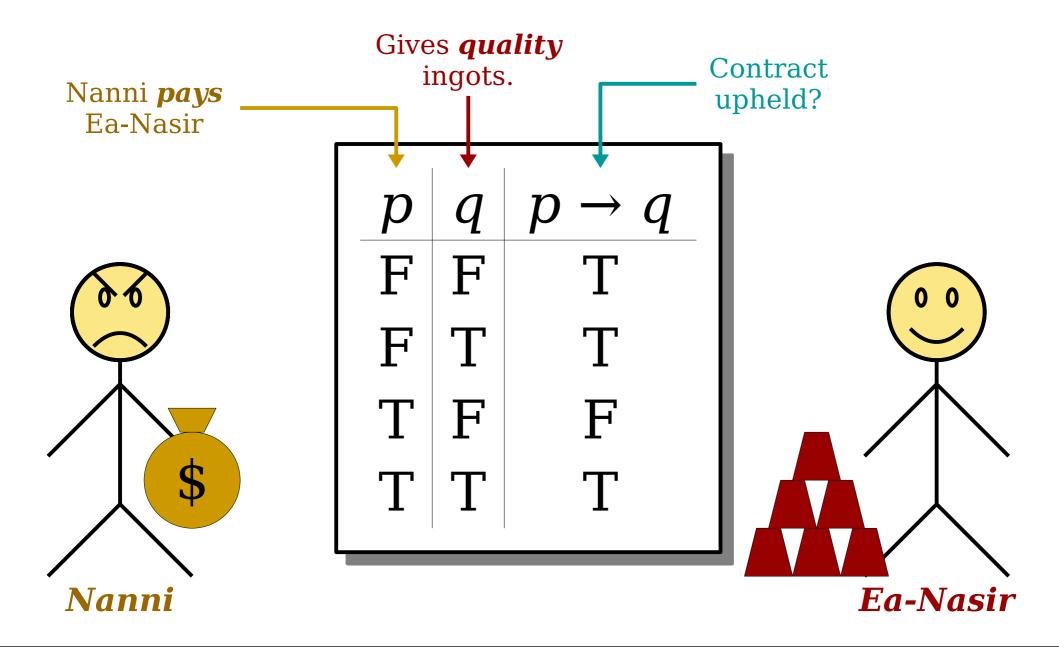
Respond at pollev.com/zhenglian740

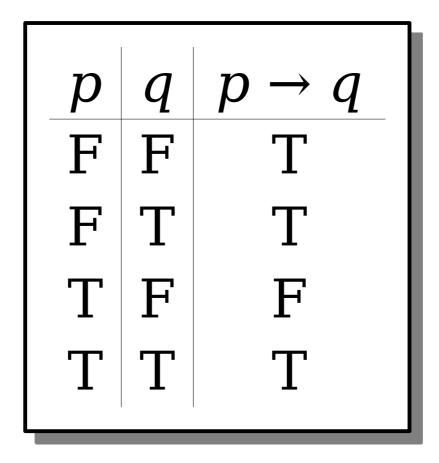


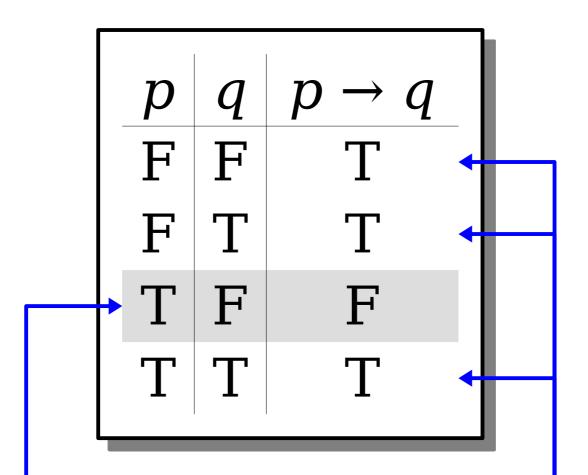




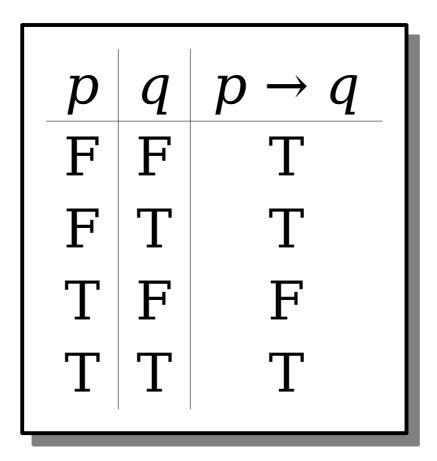




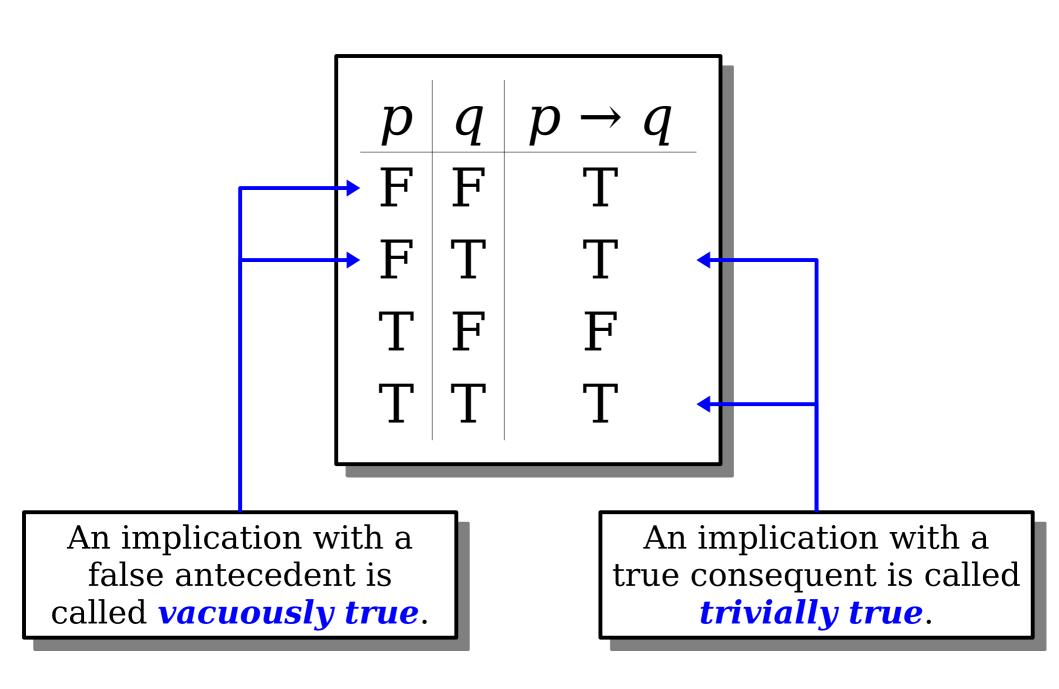


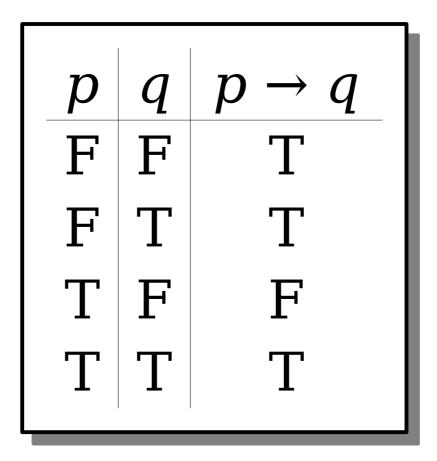


An implication is false only when the antecedent is true and the consequent is false. Every formula is either true or false, so these other entries have to be true.



Important observation: The statement $p \rightarrow q$ is true whenever $p \land \neg q$ is false.





Please commit this table to memory. We're going to need it, extensively, over the next couple of weeks.

Fun Fact: The Contrapositive Revisited

The Biconditional Connective

The Biconditional Connective

- On Friday, we saw that "p if and only if q" means both that $p \rightarrow q$ and $q \rightarrow p$.
- We can write this in propositional logic using the **biconditional** connective:

$p \leftrightarrow q$

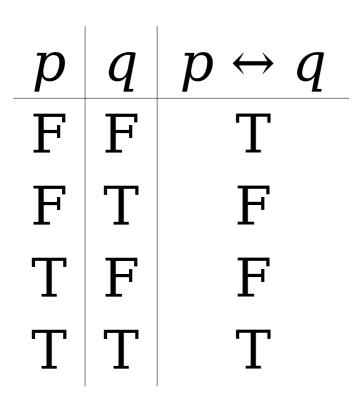
• This connective's truth table has the same meaning as "p implies q and q implies p."

Question: What should the truth table for $p \leftrightarrow q$ look like? Enter your guess as a list of four values to fill in the rightmost column of the table.

Respond at pollev.com/zhenglian740

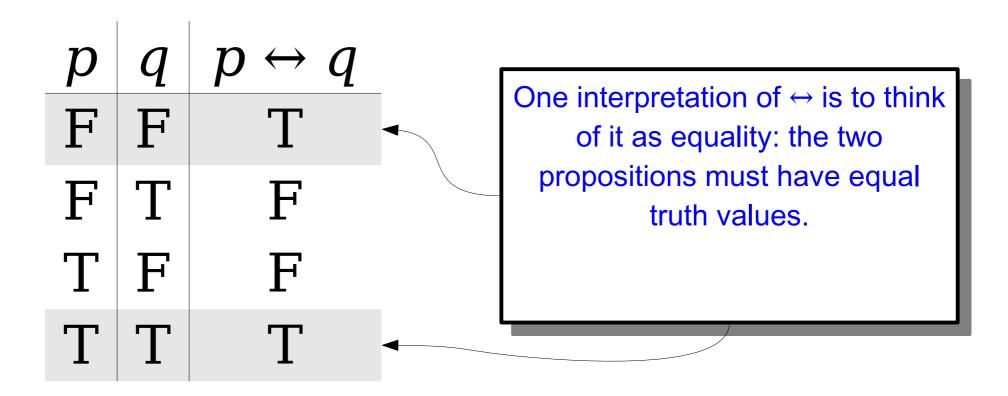
Biconditionals

- The **biconditional** connective $p \leftrightarrow q$ is read "p if and only if q."
- Here's its truth table:



Biconditionals

- The **biconditional** connective $p \leftrightarrow q$ is read "p if and only if q."
- Here's its truth table:



True and False

- There are two more "connectives" to speak of: true and false.
 - The symbol \top is a value that is always true.
 - The symbol \perp is value that is always false.
- These are often called connectives, though they don't connect anything.
 - (Or rather, they connect zero things.)

Proof by Contradiction

- Suppose you want to prove *p* is true using a proof by contradiction.
- The setup looks like this:
 - Assume *p* is false.
 - Derive something that we know is false.
 - Conclude that *p* is true.
- In propositional logic:

 $(\neg p \rightarrow \bot) \rightarrow p$

Operator Precedence

• How do we parse this statement?

$$\neg x \to y \lor z \to x \lor y \land z$$

• Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

• How do we parse this statement?

$$\neg x \to y \lor z \to x \lor y \land z$$

• Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor y \land z$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor y \land z$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor (y \land z)$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor (y \land z)$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow (y \lor z) \rightarrow (x \lor (y \land z))$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow (y \lor z) \rightarrow (x \lor (y \land z))$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \to ((y \lor z) \to (x \lor (y \land z)))$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \to ((y \lor z) \to (x \lor (y \land z)))$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

- The main points to remember:
 - \neg binds to whatever immediately follows it.
 - A and V bind more tightly than \rightarrow .
- We will commonly write expressions like $p \land q \rightarrow r$ without adding parentheses.
- For more complex expressions, we'll try to add parentheses.
- Confused? Please ask!

The Big Table

Connective	Read Aloud As	C++ Version	Fancy Name
-	"not"	!	Negation
٨	"and"	&&	Conjunction
V	"or"		Disjunction
\rightarrow	"implies"	see PS2!	Implication
\leftrightarrow	"if and only if"	see PS2!	Biconditional
Т	"true"	true	Truth
L	"false"	false	Falsity

Time-Out for Announcements!

Office Hours

- Office hours start today. Think of them as "drop-in help hours" where you can ask questions on problem sets, lecture topics, etc.
 - Check the Guide to Office Hours on the course website for the schedule.
- Most office hours are held online. A few are hybrid.
- Once you arrive, sign up on QueueStatus so that we can help people in the order they arrived:

https://queuestatus.com/queues/2774

- Office hours are much less crowded earlier in the week than later.
- Thursday (July 4^{th}) is a university holiday. We are still planning to host OHs, but watch for any updates.

Finding a Problem Set Partner

Looking for a problem set partner?

- Meet folks in lecture!
- Meet folks in office hours!
- Check out our <u>pinned thread on EdStem</u>!
- Fill out our <u>matchmaking form</u>!
 - First round of matches have been sent out.
 - We will perform a second round of matching this Friday!

Back to CS103!

Recap So Far

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are
 - Negation: $\neg p$
 - Conjunction: $p \land q$
 - Disjunction: $p \vee q$
 - Implication: $p \rightarrow q$
 - Biconditional: $p \leftrightarrow q$
 - True: \top
 - False: \bot

Translating into Propositional Logic

- *a*: I will be in the path of totality.
- *b*: I will see a total solar eclipse.

a: I will be in the path of totality.

b: I will see a total solar eclipse.

"I won't see a total solar eclipse if I'm not in the path of totality."

Question: How would you express this statement in propositional logic?

Respond at pollev.com/zhenglian740

a: I will be in the path of totality.

b: I will see a total solar eclipse.

"I won't see a total solar eclipse if I'm not in the path of totality."

 $\neg a \rightarrow \neg h$

"**p** if **q**"

translates to

$\boldsymbol{q} \rightarrow \boldsymbol{p}$

It does not translate to

 $p \rightarrow q$

 \triangle

- *a*: I will be in the path of totality.
- *b*: I will see a total solar eclipse.
- *c*: There is a total solar eclipse today.

- *a*: I will be in the path of totality.
- *b*: I will see a total solar eclipse.
- *c*: There is a total solar eclipse today.

"If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse."

Question: How would you express this statement in propositional logic?

Respond at pollev.com/zhenglian740

- *a*: I will be in the path of totality.
- *b*: I will see a total solar eclipse.
- *c*: There is a total solar eclipse today.

"If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse."

$$a \wedge \neg c \rightarrow \neg b$$

"**p**, but **q**"

translates to

p A q

The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
 - In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositional phrases lead to counterintuitive translations; make sure to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince you that the statement **p** ∧ **q** is false?

Quick Question:

What would I have to show you to convince you that the statement **p v q** is false?

de Morgan's Laws

• Using truth tables, we concluded that

 $\neg(p \land q)$

is equivalent to

$$\neg p \lor \neg q$$

• We also saw that

 $\neg(p \lor q)$

is equivalent to

$$\neg p \land \neg q$$

 These two equivalences are called *De Morgan's Laws*.

de Morgan's Laws in Code

• **Pro tip:** Don't write this:

if (!(p() && q())) {
 /* ... */
}

• Write this instead:

if (!p() || !q()) {
 /* ... */
}

• (This even short-circuits correctly!)

An Important Equivalence

• Earlier, we talked about the truth table for $p \rightarrow q$. We chose it so that

p → *q* is equivalent to ¬(*p* ∧ ¬*q*)
Later on, this equivalence will be incredibly useful:

 $\neg (p \rightarrow q)$ is equivalent to $p \land \neg q$

Another Important Equivalence

• Here's a useful equivalence. Start with

 $p \rightarrow q$ is equivalent to $\neg(p \land \neg q)$

- By de Morgan's laws:
 - $p \rightarrow q$ is equivalent to $\neg(p \land \neg q)$
 - is equivalent to $\neg p \lor \neg \neg q$
 - is equivalent to $\neg p \lor q$
- Thus $p \rightarrow q$ is equivalent to $\neg p \lor q$

Another Important Equivalence

• Here's a useful equivalence. Start with

 $p \rightarrow q$ is equivalent to $\neg(p \land \neg q)$

• By de Morgan's laws:

 $\boldsymbol{p} \rightarrow \boldsymbol{q}$ is equivalent

is equivalent

is equivalent

If p is false, then ¬p ∨ q is true.
 If p is true, then q has to be
true for the whole expression to
 be true.

• Thus $p \rightarrow q$ is equivalent to $\neg p \lor q$

Next Time

- First-Order Logic
 - Reasoning about groups of objects.
- First-Order Translations
 - Expressing yourself in symbolic math!